书名:Python金融衍生品大数据分析 建模、模拟、校准与对冲
格式:pdf电子书
作者:(德)伊夫·希尔皮斯科(Yves Hilpisch)著;蔡立端译
出版时间:2017年
作者简介
Yves Hilpsch是Python Quants(德国)股份有限公司的创始人和任事股东,也是Python Quants(纽约)有限责任公司的共同创办人。该集团提供基于Python的金融和衍生品分析软件以及与Python及金融相关的咨询、开发和培训服务。Yves Hilpsch还是Python for Finance一书的作者。
蔡立端:美国伊利诺伊大学金融硕士,华盛顿大学经济学硕士、博士。熟悉行为金融与量化投资。在金融、计算机等领域的学术、实战经验丰富。
内容简介:
Python在数据分析领域得到了越来越广泛的应用。第一部分着眼于风险对股市指数期权的价值、股票、利率的影响。第二部分介绍套利定价理论、离散时间内风险中性估值,持续时间,介绍了两种流行的期权定价方法。最后,第三部分介绍市场估值工作的整个过程。
目录:
第 1 章 快速导览 1
1.1 基于市场的估价 1
1.2 本书的结构 1
1.3 为什么选择 Python 3
1.4 深入阅读 4
第 1 部分 市场 6
第 2 章 什么是基于市场的定价 6
2.1 期权及其价值 6
2.2 普通金融工具与奇异金融工具 10
2.3 影响股权衍生工具的风险 11
2.3.1 市场风险 11
2.3.2 其他风险 12
2.4 对冲 13
2.5 基于市场的定价过程 14
第 3 章 市场典型事实 15
3.1 简介 15
3.2 波动率、相关性 15
3.3 基本案例:正态收益率 17
3.4 指数和股票 21
3.4.1 典型事实 21
3.4.2 DAX 指数收益率 21
3.5 期权市场 25
3.5.1 买卖价差 25
3.5.2 隐含波动率曲面 27
3.6 短期利率 28
3.7 结论 31
3.8 Python 脚本 31
3.8.1 GBM 分析 31
3.8.2 DAX 分析 35
3.8.3 BSM 隐含波动率 36
3.8.4 EURO STOXX 50 隐含波动率 38
Python金融衍生品大数据分析pdf3.8.5 EURIBOR 分析 40
第 2 部分 理论定价 42
第 4 章 风险中性定价 42
4.1 简介 42
4.2 离散时间不确定性 43
4.3 离散市场模型 47
4.3.1 基本元素 47
4.3.2 基础定义 47
4.4 离散时间模型的主要结果 49
4.5 连续时间模型 53
4.6 总结 58
4.7 证明 59
4.7.1 引理 1 59
4.7.2 命题 1 59
4.7.3 定理 1 60
第 5 章 完全市场模型 62
5.1 简介 62
5.2 Black-Scholes-Merton 模型 62
5.2.1 市场模型 62
5.2.2 基本 PDE 63
5.2.3 欧式期权 64
5.3 BSM 模型的 Greeks 67
5.4 Cox-Ross-Rubinstein 模型 71
5.5 总结 74
5.6 证明及 Python 脚本 74
5.6.1 伊藤引理 74
5.6.2 BSM 期权定价的脚本 74
5.6.3 BSM 看涨期权 Greeks 脚本 78
Python金融衍生品大数据分析pdf5.6.4 CRR 期权定价脚本 81
第 6 章 基于傅里叶的期权定价 84
6.1 概述 84
6.2 定价问题 85
6.3 傅里叶变换 85
6.4 基于傅里叶的期权定价 87
6.4.1 Lewis(2001) 87
6.4.2 Carr-Madan(1999) 89
6.5 数值计算 91
6.5.1 傅里叶级数 91
6.5.2 快速傅里叶变换 94
6.6 应用 94
6.6.1 Black-Scholes-Merton(1973)模型 94
6.6.2 Merton(1976)模型 97
6.6.3 离散市场模型 97
6.7 总结 101
6.8 Python 脚本 101
6.8.1 使用傅里叶方法的 BSM 看涨期权定价 101
6.8.2 傅里叶级数 106
6.8.3 单位根 108
6.8.4 卷积 108
6.8.5 参数模块 109
6.8.6 卷积计算看涨期权价值 110
6.8.7 卷积期权定价 111
6.8.8 DFT 期权定价 111
Python金融衍生品大数据分析pdf6.8.9 DFT 速度检验 112
第 7 章 利用模拟的美式期权定价 114
7.1 概述 114
7.2 金融模型 114
7.3 美式期权定价 115
7.3.1 问题形式 115
7.3.2 定价算法 117
7.4 数值结果 118
7.4.1 美式看跌期权 118
7.4.2 美式空头秃鹰式价差 122
7.5 总结
Python金融衍生品大数据分析pdf下载